শুক্রবার, ১৩ জানুয়ারী, ২০১২

ইলেকট্রিক সার্কিট নিয়ে সংক্ষিপ্ত টিউটরিয়াল

আশা করি কেউ উচ্চাশা নিয়ে পড়া শুরু করবেন না। অনেকেই হয়ত এই বিষয়গুলো সম্পর্কে অবগত। তবে যাদের ধারণা পরিষ্কার নয় তাদের জন্য কিছুটা উপকারে আসতেও পারে। আজকের সংক্ষিপ্ত টিউটরিয়াল থাকবে ইলেকট্রিক সার্কিটের একেবারে বেসিক একটি বিষয় নিয়ে। একটি সার্কিটে কম্পোনেন্টগুলো তিনভাবে সংযুক্ত থাকতে পারে: সিরিজ সংযোগ, সমান্তরাল সংযোগ, এবং ওয়াই/ডেল্টা সংযোগ। ওয়াই/ডেল্টা সংযোগ খুব কমন না হলেও জেনে রাখা ভাল। এই সংযোগগুলো সম্পর্কে পরিষ্কার ধারণা না থাকলে সামনে যেমন এগোনো যাবে না তেমনি আবার সার্কিট সমাধান করতে যেয়ে প্রতি মুহূর্তে ভুল হওয়ার সম্ভাবনা থেকে যাবে। এই লেখাতে প্রথমে বেসিক কিছু ধারণা দেয়া হবে, তারপর প্রশ্নের জন্য ফ্লোর উম্মুক্ত করে রাখা হবে।

সিরিজ সংযোগ: সিরিজ বা সমান্তরাল বা ওয়াই/ডেল্টা সংযোগ এর প্রশ্ন তখনই আসবে যখন একটি সার্কিটে দুই বা ততোধিক রোধক থাকবে। যদি দুটি বিন্দুর মধ্যে দুই বা ততোধিক রোধক সংযুক্ত থাকে এবং মাঝখানে অন্য কোন পথ না থাকে তাহলে দুই বিন্দুর মাঝের রোধকগুলোকে সিরিজে সংযুক্ত রোধক বলা হয়। সিরিজে সংযুক্ত রোধকের ক্ষেত্রে প্রত্যেক রোধকের মধ্য দিয়ে একই কারেন্ট (I) প্রবাহিত হবে। নীচের চিত্রটি দেখুন:



লক্ষণীয় যে, দুটি লাল বিন্দুর মধ্যে n সংখ্যক রোধক যুক্ত আছে এবং বাম পাশের লাল বিন্দু (a) থেকে ডান পাশের লাল বিন্দু (b) পর্যন্ত একটিমাত্র পথ থাকার কারণে প্রত্যেক রোধকের মধ্য দিয়ে একই কারেন্ট প্রবাহিত হবে। এই ধরণের সংযোগকে সিরিজ সংযোগ বলা হয়। সিরিজ সংযোগের ক্ষেত্রে দুই বিন্দুর মধ্যে মোট রোধ হবে সবগুলো রোধের যোগফলের সমষ্টি। রোধের একক হচ্ছে ওহম (Ω)। ধরা যাক দুটি বিন্দুর মধ্যে ১০, ১৫, ও ২৫ ওহমের তিনটি রোধক সিরিজে সংযুক্ত আছে। তাহলে মোট রোধ হবে ৫০ ওহম। অন্যদিকে বিন্দু দুটির মধ্যে বিভব পার্থক্য হবে প্রত্যেক রোধকের দুই প্রান্তের বিভব পার্থক্যের যোগফলের সমান (Vab = V1 + V2 + ... + Vn = IR1 + IR2 + ... + IRn)। এখানে a ও b দ্বারা দুই প্রান্তের দুই লাল বিন্দুকে নির্দেশ করা হচ্ছে, ফলে Vab হচ্ছে দুই লাল বিন্দুর মধ্যে বিভব পার্থক্য। অন্যদিকে V1 দ্বারা R1 এর দুই প্রান্তের বিভব পার্থক্য, V2 দ্বারা R2 এর দুই প্রান্তের বিভব পার্থক্য, এবং Vn দ্বারা Rn এর দুই প্রান্তের বিভব পার্থক্যকে বুঝানো হচ্ছে, যেখানে ওহমের সূত্র অনুযায়ী V = IR.

সমান্তরাল সংযোগ: সমান্তরাল সংযোগের ক্ষেত্রে দুই বা ততোধিক রোধকের এক প্রান্তগুলো একই বিন্দুতে এবং অপর প্রান্তগুলো আরেক বিন্দুতে সংযুক্ত থাকে। নীচের চিত্রটি দেখুন:



স্মরণ রাখার মতো কিছু পয়েন্ট: ১) প্রত্যেক সমান্তরাল পথকে একেকটি ব্র্যাঞ্চ বলা হয়; ২) দুটি বিন্দুর মধ্যে যত সংখ্যক ব্র্যাঞ্চই সংযুক্ত থাক না কেন এবং ব্র্যাঞ্চগুলোর রোধের মান যা-ই হোক না কেন, প্রত্যেক ব্র্যাঞ্চ এর দুই প্রান্তের বিভব পার্থক্য একই হবে; ২) দুটি বিন্দুর মধ্যে যত সংখ্যক ব্র্যাঞ্চই সংযুক্ত থাক না কেন, তাদের মধ্যে কোন একটির রোধ যদি শূন্য হয় (মানে শর্ট সার্কিট) তাহলে তুল্য রোধও শূন্য হবে; ৩) প্রত্যেক ব্র্যাঞ্চ এর মধ্যে দিয়ে প্রবাহিত কারেন্ট এর যোগফল (Algebraic sum) হবে তুল্য কারেন্ট। তুল্য রোধের সূত্র উপরে দেয়া হয়েছে।

ওয়াই-ডেল্টা রূপান্তর: সিরিজ ও সমান্তরাল সংযোগ ছাড়াও একটি সার্কিটে ওয়াই কিংবা ডেল্টা কিংবা উভয় সংযোগই থাকতে পারে। ওয়াই কিংবা ডেল্টা সংযোগের ক্ষেত্রে সিরিজ-সমান্তরাল এর সূত্র ব্যবহার করে সমাধান করা যায় না। এক্ষেত্রে আলাদা সূত্র ব্যবহার করতে হয়। ধরা যাক একটি সার্কিটে ডেল্টা সংযোগ থাকার কারণে সমাধান করা যাচ্ছে না। সেক্ষেত্রে ডেল্টা সংযোগকে ওয়াই সংযোগে রূপান্তর করতে হবে, এবং প্রয়োজনে বিপরীতটাও করতে হবে। কিন্তু ডেল্টা থেকে ওয়াই কিংবা ওয়াই থেকে ডেল্টাতে রূপান্তর করলে রোধগুলোর মান পরিবর্তন হয়ে যায়। নিচের চিত্রে ওয়াই-ডেল্টা সার্কিট এবং রোধগুলোর মান নির্ণয়ের সূত্র দেয়া হলো।





স্মরণযোগ্য কিছু পয়েন্ট: ১) যেখানে সিরিজ ও সমান্তরাল সংযোগের ক্ষেত্রে দুটি বিন্দুর মধ্যে বিবেচনা করতে হয় সেখানে ওয়াই-ডেল্টা সংযোগের ক্ষেত্রে তিনটি বিন্দুকে বিবেচনায় নিতে হয় (চিত্রে x, y, ও z); ২) ডেল্টা থেকে ওয়াই কিংবা ওয়াই থেকে ডেল্টাতে রূপান্তর করলে বিন্দু তিনটির কোন পরিবর্তন হবে না, শুধু রোধগুলোর মান পরিবর্তন হবে; ৩) ডেল্টা থেকে ওয়াই এর ক্ষেত্রে সূত্রগুলো মনে রাখার সহজ উপায় হচ্ছে সবগুলো রোধের হরের মান একই হবে এবং তা হবে তিনটি রোধের যোগফলের সমষ্টি (Ra + Rb + Rc)। লবের মানগুলোর ক্ষেত্রে প্রত্যেক রোধের পাশের দুটি বাহুর রোধের গুণফল হবে। যেমন R1 এর ক্ষেত্রে পাশের দুটি বাহুর রোধ হচ্ছে Ra ও Rb. ৪) ওয়াই থেকে ডেল্টাতে রূপান্তরের ক্ষেত্রেও সূত্রগুলো সহজে মনে রাখা যায়। এক্ষেত্রে সবগুলো রোধের লবের মান একই হবে (উপরের সূত্র দ্রষ্টব্য)। হর হবে প্রত্যেক রোধের বিপরীত বাহুর রোধ। যেমন Ra এর বিপরীত বাহু হচ্ছে R2. ফলে Ra এর ক্ষেত্রে R2 দিয়ে ভাগ করতে হবে। এভাবে অন্যান্য রোধের মানও সহজেই বের করা যায়। তবে সর্বাগ্রে চর্চা! সার্কিটের ক্ষেত্রে নিয়মিত চর্চা ছাড়া ভুল হওয়ার সম্ভাবনা যথেষ্ট।

ইচ্ছে করলে কিছু উদাহরণ দেয়া যেত। কিন্তু সার্কিট ডায়াগ্রাম সহ সেগুলো ব্লগে উপস্থাপন করা বেশ সময়সাপেক্ষ বিধায় আজকের মতো এখানেই রাখছি। তাছাড়া সার্কিট ডায়াগ্রাম সহ ব্লগে হাতে-কলমে বুঝানো প্রায় অসম্ভব। বেসিকটা বুঝে নিজেই চেষ্টা করতে হবে। তবে কারো কোন প্রশ্ন থাকলে মন্তব্যের ঘরে জানানো যেতে পারে।



কার্শহফ'স সার্কিট নীতি (Kirchhoff's Circuit Laws) নিয়ে আলোচনা করা হবে। কার্শহফ'স সার্কিট নীতি আসলে দুটি: কার্শহফ'স কারেন্ট নীতি (Kirchhoff's Current Law) এবং কার্শহফ'স ভোল্টেজ নীতি (Kirchhoff's Voltage Law)। এই দুটি নীতিই শক্তির নিত্যতা সূত্রের উপর ভিত্তি করে প্রতিষ্ঠিত। নীতি দুটি নিয়ে আলোচনাতে যাওয়ার আগে সংযোগস্থল বা নোড (Node/Junction) এবং ফাঁস বা লুপ (Loop) সম্পর্কে ধারণা থাকতে হবে। সাধারণ অর্থে দুই বা ততোধিক ব্র্যাঞ্চ এর মিলিত সংযোগস্থলকে নোড বলা হয়, তবে সার্কিট বিশ্লেষণের ক্ষেত্রে তিন বা ততোধিক ব্র্যাঞ্চ এর মিলিত সংযোগস্থল বিবেচনা করা হয়ে থাকে যাকে বলে এসেনশিয়াল নোড (Essential Node)। অর্থাৎ নোড হচ্ছে একটি বিন্দু বা সংযোগস্থল যেখানে দুই বা ততোধিক ব্র্যাঞ্চ মিলিত হয়। অন্যদিকে ফাঁস বা লুপ হচ্ছে বৃত্তের মতো বদ্ধ পথ।

কার্শহফ'স কারেন্ট নীতি (KCL): এই নীতি অনুযায়ী কোন নোড বা বিন্দুতে যে পরিমাণ কারেন্ট প্রবেশ করে, ঠিক একই পরিমাণ কারেন্ট সেই বিন্দু থেকে বেরিয়ে যায়। অন্যভাবে বললে বলা যায়, কোন বিন্দুতে কারেন্ট এর বীজগণিতীয় যোগফল শূন্য। বীজগণিতীয় যোগফল বলা হচ্ছে এ কারণে যে, কারেন্ট ধনাত্মক বা ঋণাত্মক হতে পারে। যেমন একটি বিন্দুতে কারেন্ট এর প্রবেশকে যদি ধনাত্মক ধরা হয় তাহলে সেই বিন্দু থেকে কারেন্ট এর বহির্গমনকে ঋণাত্মক ধরতে হবে, এবং এর বিপরীতটাও সত্য। গণিতের সাহায্যে কার্শহফ'স কারেন্ট নীতিকে নিম্নের সমীকরণ দ্বারা প্রকাশ করা যায়,



যেখানে n হচ্ছে একটি বিন্দুতে সংযুক্ত মোট ব্র্যাঞ্চের সংখ্যা। এবার নিচের চিত্রটি লক্ষ্য করা যাক। চিত্র অনুযায়ী একটি বিন্দুতে চারটি ব্র্যাঞ্চ মিলিত হয়েছে এবং তীর চিহ্ন দ্বারা ব্র্যাঞ্চ কারেন্ট এর দিক নির্দেশ করা হচ্ছে। দেখা যাচ্ছে I1 ও I2 নোডে প্রবেশ করছে, এবং I3 ও I4 নোড থেকে বেরিয়ে যাচ্ছে। এবার ঐ নোডে যদি কার্শহফ'স কারেন্ট নীতি প্রয়োগ করা হয় তাহলে লিখা যায়: I1 + I2 = I3 + I4. এখানে মাত্র একটি নোডের উদাহরণ দেয়া হয়েছে। তবে একটি সার্কিটে একাধিক নোড থাকতে পারে। কার্শহফ'স কারেন্ট নীতি প্রয়োগ করে নোডাল অ্যানালাইসিস (Nodal Analysis) নামক একটি পদ্ধতির সাহায্যে সার্কিট সমাধান করা যায়। 



স্মরণযোগ্য পয়েন্ট: ১) একটি নোডের সাথে যতগুলো ব্র্যাঞ্চ যুক্ত থাকবে তার সবগুলোকেই বিবেচনা করতে হবে, কোন একটিকেও বাদ দেয়া যাবে না; ২) কারেন্ট এর দিক অনুযায়ী (তীর চিহ্ন লক্ষ্যণীয়) ধনাত্মক ও ঋণাত্মক কারেন্ট চিহ্নিত করতে হবে।

কার্শহফ'স ভোল্টেজ নীতি (KVL): এই নীতি অনুযায়ী যে কোন বদ্ধ সার্কিট বা লুপের মধ্যে ভোল্টেজ এর বীজগণিতীয় যোগফল শূন্য। এক্ষেত্রেও বীজগণিতীয় যোগফল বলার কারণ হচ্ছে ভোল্টেজ ধনাত্মক বা ঋণাত্মক হতে পারে। কার্শহফ'স ভোল্টেজ নীতিকে গণিতের সাহায্যে এভাবে প্রকাশ করা যায়,



যেখানে m হচ্ছে একটি লুপের মধ্যে মোট ভোল্টেজ এর সংখ্যা। এবার নিচে প্রথম সার্কিট ডায়াগ্রামটি লক্ষ্য করুন, যেখানে একটি ভোল্টেজ সোর্স (E) এবং চারটি রোধক আছে। রোধক চারটির বিভব পার্থক্য দেয়া আছে যথাক্রমে E1, E2, E3, ও E4. যে কোন একটি বিন্দু থেকে শুরু করে যদি কার্শহফ’স ভোল্টেজ নীতি প্রয়োগ করা হয় তাহলে লিখা যায়: E – E1 – E2 – E3 – E4 = 0. অনুরূপভাবে, দ্বিতীয় সার্কিট ডায়াগ্রামে কার্শহফ’স ভোল্টেজ নীতি প্রয়োগ করলে আসে: VB – V1 – V2 = 0. একটি সার্কিটে একাধিক লুপ থাকতে পারে। কার্শহফ’স ভোল্টেজ নীতি প্রয়োগ করে মেশ অ্যানালাইসিস (Mesh Analysis) নামক একটি পদ্ধতির সাহায্যে সার্কিট সমাধান করা যায়। 



 

স্মরণযোগ্য পয়েন্ট: ১) একটি লুপের মধ্যে যতগুলো ভোল্টেজ (Rise/Drop) থাকবে তার সবগুলোকেই বিবেচনা করতে হবে, কোন একটিকেও বাদ দেয়া যাবে না; ২) পোলারিটি অনুযায়ী ধনাত্মক ও ঋণাত্মক ভোল্টেজ চিহ্নিত করতে হবে; ৩) কোন একটি বিন্দু থেকে শুরু করে যে কোন এক দিক দিয়ে (ঘড়ির কাঁটার দিকে কিংবা বিপরীত দিকে) লুপ সম্পন্ন করতে হবে।



এই পর্বে কার্শহফ’স কারেন্ট নীতির উপর ভিত্তি করে নোডাল অ্যানালাইসিস (Nodal Analysis) নিয়ে আলোচনা করা হবে। নোডাল অ্যানালাইসিস হচ্ছে একটি প্রণালী যার দ্বারা কোন সার্কিটের নোড ভোল্টেজ নির্ণয় করা হয়। একটি সার্কিটের নোড ভোল্টেজ জেনে গেলে সেই সার্কিটের যে কোন ব্র্যাঞ্চের কারেন্টও বের করা যায়। নোডাল অ্যানালাইসিস এর জন্য ওহমের সূত্র এবং কার্শহফ’স কারেন্ট নীতি সম্পর্কে পরিষ্কার ধারণা থাকা আবশ্যক। উল্লেখ্য যে, সাধারণ অর্থে দুই বা ততোধিক ব্র্যাঞ্চ এর মিলিত সংযোগস্থলকে নোড বলা হয়, তবে নোডাল অ্যানালাইসিস এর ক্ষেত্রে তিন বা ততোধিক ব্র্যাঞ্চ এর মিলিত সংযোগস্থল বিবেচনা করা হয়ে থাকে যাকে বলে এসেনশিয়াল নোড (Essential Node)। নোডাল অ্যানালাইসিস এর ক্ষেত্রে নিম্নের ধাপগুলো অনুসরণ করতে হবে:

ধাপ-১: প্রথমে এসেনশিয়াল নোডগুলো (তিন বা ততোধিক ব্র্যাঞ্চ এর মিলিত বিন্দু) সনাক্ত করতে হবে।

ধাপ-২: এসেনশিয়াল নোডগুলোর মধ্য থেকে একটিকে রেফারেন্স নোড হিসেবে চিহ্নিত করতে হবে। যে নোডে সর্বোচ্চ সংখ্যক ব্র্যাঞ্চ যুক্ত থাকে সেটিকে রেফারেন্স নোড ধরা সুবিধাজনক। রেফারেন্স নোড সাধারণত সার্কিটের তলদেশে থাকে। রেফারেন্স নোডের ভোল্টেজ শূন্য ধরা হয় বিধায় গ্রাউন্ড চিহ্ন দ্বারা লেবেল করা হয়।

ধাপ-৩: নন-রেফারেন্স নোডগুলোকে V1, V2, Vn দ্বারা লেবেল করতে হবে, যেখানে V1 হচ্ছে রেফারেন্স নোডের সাপেক্ষে নোড-১ এর ভোল্টেজ এবং Vn হচ্ছে নোড-n এর ভোল্টেজ। কোন নোডের ভোল্টেজ জানা থাকলে সেই নোডকে লেবেল করার দরকার নাই।

ধাপ-৪: প্রত্যেক নন-রেফারেন্স নোডে কার্শহফ’স কারেন্ট নীতি প্রয়োগ করতে হবে। কার্শহফ’স কারেন্ট নীতি প্রয়োগের সুবিধার্থে ব্র্যাঞ্চ কারেন্টগুলোকে I1, I2, In দ্বারা লেবেল করা যেতে পারে। একটি সার্কিটে যদি দুটি নন-রেফারেন্স নোড থাকে তাহলে কার্শহফ’স কারেন্ট নীতি প্রয়োগ করার পর দুটি সমীকরণ পাওয়া যাবে। অনুরূপভাবে, n সংখ্যক নন-রেফারেন্স নোডের ক্ষেত্রে n সংখ্যক সমীকরণ পাওয়া যাবে।

ধাপ-৫: সমীকরণগুলো সমাধান করে অজানা নোড ভোল্টেজ (V1, V2, Vn) নির্ণয় করতে হবে।

এবার দুটি উদাহরণ দেয়া যাক। নিচের সার্কিটে দুটি এসেনশিয়াল নোড আছে, যাদের মধ্যে একটিকে নন-রেফারেন্স নোড (উপরের লাল বিন্দু) এবং অন্যটিকে রেফারেন্স নোড বা গ্রাউন্ড হিসেবে চিহ্নিত করা হয়েছে (পাদদেশের লাল বিন্দু)। নন-রেফারেন্স নোডটিকে Vb দ্বারা লেবেল করা হয়েছে, যার মান নির্ণয় করতে হবে। বুঝার সুবিধার জন্য Va ও Vc দ্বারা দুটি পয়েন্ট চিহ্নিত করা হয়েছে, যেখানে রেফারেন্স নোডের সাপেক্ষে Va = V1 = 32 V এবং Vc = V2 = 20 V.



এবার যদি নন-রেফারেন্স নোডে কার্শহফ’স কারেন্ট নীতি প্রয়োগ করা হয় তাহলে নিচের সমীকরণ পাওয়া যাবে (তীর চিহ্ন অনুযায়ী i1 ও i2 নোডের দিকে প্রবেশ করছে এবং i3 নোড থেকে বেরিয়ে যাচ্ছে),

i1 + i2 = i3

যেখানে ওহমের সূত্র অনুযায়ী i1 = (Va – Vb)/R1, i2 = (Vc – Vb)/R2, এবং i3 = (Vb – 0)/R3 = Vb/R3. এবার i1, i2, ও i3 এর মান উপরের সমীকরণে বসিয়ে দিয়ে পাওয়া যায়,

(Va – Vb)/R1 + (Vc – Vb)/R2 = Vb/R3

এই সমীকরণে একমাত্র Vb ছাড়া সবগুলো চালকের মান যেহেতু দেয়া আছে সেহেতু সমীকরণটি সমাধান করলে Vb = 24 V পাওয়া যাবে। Vb এর মান পাওয়া গেলে ব্র্যাঞ্চ কারেন্ট i1, i2, ও i3 এর মানও সহজেই বের করা যাবে। মানগুলো হচ্ছে: i1 = (Va – Vb)/R1 = (32 – 24)/20 = 0.4 A, i2 = (Vc – Vb)/R2 = (20 – 24)/40 = – 0.1 A, i3 = Vb/R3 = 24/80 = 0.3 A. উল্লেখ্য যে, তীর চিহ্ন দ্বারা কারেন্টের যে দিক নির্দেশ করা হয়েছে সেগুলোর নির্দিষ্ট কোন নিয়ম নাই। ইচ্ছেমতো দিক নির্দেশ করা যায়, তবে সে অনুযায়ী সমীকরণ লিখতে হবে এবং সমাধান একই হবে। আরো উল্লেখ্য যে, সমাধান সঠিক হয়েছে কিনা তা প্রথম সমীকরণের দ্বারা যাচাই করা যাবে।

দুই নোড বিশিষ্ট সার্কিট ভাল করে বুঝার পর নোডের সংখ্যা বাড়ানো যেতে পারে। নিচের সার্কিটে মোট তিনটি এসেনশিয়াল নোড আছে, যাদের মধ্যে দুটিকে নন-রেফারেন্স নোড (দুটি লাল বিন্দু) এবং একটিকে রেফারেন্স নোড হিসেবে চিহ্নিত করা হয়েছে (পাদদেশ)।



এই সার্কিটের দুটি নন-রেফারেন্স নোডে কার্শহফ’স কারেন্ট নীতি প্রয়োগ করা হলে নিচের সমীকরণ দুটি পাওয়া যাবে,

(V1 – 2)/2 + V1/3 + (V1 – V2)/1 = 0 (বাম পাশের নোডের জন্য)

এবং

(V2 – V1)/1 + V2/5 - 2 = 0 (ডান পাশের নোডের জন্য)

এবার উপরের সমীকরণ দুটি সমাধান করলে V1 ও V2 এর মান যথাক্রমে – 2 V ও – 4/3 V পাওয়া যাবে।

নোট: দুটি নন-রেফারেন্স নোডের মধ্যে যদি শুধু ভোল্টেজ সোর্স থাকে তাহলে সেই নোড দুটিতে কার্শহফ’স কারেন্ট নীতি প্রয়োগ করা যায় না, যেহেতু এই নীতির ক্ষেত্রে ওহমের সূত্র প্রয়োগ করতে হয়; আর ওহমের সূত্রের ক্ষেত্রে অবশ্যই রোধ থাকতে হবে। ফলে এই ধরণের ব্যতিক্রম ক্ষেত্রে সুপারনোড (Supernode) পদ্ধতি প্রয়োগ করতে হবে, অর্থাৎ দুটি নোডকে একটি নোড হিসেবে বিবেচনা করতে হবে। তবে তার আগে সুপারনোড ছাড়াই তিন/চার নোড বিশিষ্ট বেশ কিছু সার্কিট সমাধান করে নোডাল অ্যানালাইসিস সম্পর্কে ধারণা পরিষ্কার করতে হবে।



এই পর্বে থাকছে কার্শহফ’স ভোল্টেজ নীতির উপর ভিত্তি করে মেশ অ্যানালাইসিস (Mesh Current Analysis) নিয়ে আলোচনা। মেশ অ্যানালাইসিস এর দ্বারা কোন সার্কিটের মেশ কারেন্ট নির্ণয় করা হয়। একটি সার্কিটের মেশ কারেন্ট জেনে গেলে সেই সার্কিটের যে কোন ব্র্যাঞ্চের কারেন্ট ও ভোল্টেজও বের করা যায়। মেশ অ্যানালাইসিস এর জন্য ওহমের সূত্র এবং কার্শহফ’স ভোল্টেজ নীতি সম্পর্কে পরিষ্কার ধারণা থাকা আবশ্যক। জালের মধ্যে ক্ষুদ্র ক্ষুদ্র বৃত্তাকার ছিদ্রকে একেকটি মেশ ধরা যেতে পারে, আর প্রত্যেকটি মেশকে একেকটি লুপও বলা যায়। ফলে সার্কিটকে যদি জালের সাথে তুলনা করা হয় তাহলে একটি সার্কিটে একাধিক মেশ থাকতে পারে। মেশ অ্যানালাইসিস এর ক্ষেত্রে নিম্নের ধাপগুলো অনুসরণ করতে হবে:

ধাপ-১: প্রথমে এসেনশিয়াল মেশগুলো সনাক্ত করতে হবে (এসেনশিয়াল মেশ হচ্ছে সার্কিটের মধ্যে একটি লুপ যার মধ্যে অন্য কোন লুপ থাকে না, যেমন জালের মধ্যে ক্ষুদ্র একটি লুপ)।

ধাপ-২: এসেনশিয়াল মেশগুলোকে i1, i2, in কারেন্ট দ্বারা বৃত্তাকারে লেবেল করতে হবে। কারেন্ট এর দিক ইচ্ছেমতো ঘড়ির কাঁটার দিকে কিংবা বিপরীত দিকে নির্দেশ করা যায়। তবে সবগুলো মেশ কারেন্টের দিক ঘড়ির কাঁটার দিকে নির্দেশ করলে ভুল হওয়ার সম্ভাবনা কম থাকে।

ধাপ-৩: প্রত্যেক এসেনশিয়াল মেশ-এ কার্শহফ’স ভোল্টেজ নীতি প্রয়োগ করতে হবে। n সংখ্যক এসেনশিয়াল মেশ এর জন্য n সংখ্যক সমীকরণ পাওয়া যাবে।

ধাপ-৪: সমীকরণগুলো সমাধান করে অজানা মেশ কারেন্ট (i1, i2, in) নির্ণয় করতে হবে।

এবার দু-একটি উদাহরণ দেয়া যাক। নিচের সার্কিটে দুটি এসেনশিয়াল মেশ আছে, যাদেরকে i1 ও i2 দ্বারা তীর চিহ্নিত বৃত্তের মধ্যে দেখানো হয়েছে। এখানে i1 ও i2 হচ্ছে যথাক্রমে মেশ-১ ও মেশ-২ এর কারেন্ট। উল্লেখ্য যে, মেশ-১ এর কারেন্ট i1 হলেও 2 Ω রোধক, 4 Ω রোধক, ও 12 V ভোল্টেজ সোর্স এর মধ্য দিয়ে প্রবাহিত কারেন্টও হবে i1. অনুরূপভাবে, মেশ-২ এর কারেন্ট i2 হলেও 9 Ω রোধক, 3 Ω রোধক, ও 8 V ভোল্টেজ সোর্স এর মধ্য দিয়ে প্রবাহিত কারেন্টও হবে i2. তবে 12 Ω রোধকের মধ্যে দিয়ে প্রবাহিত কারেন্ট হবে i = i1 – i2 (i এর নির্দেশিত দিক অনুযায়ী), যেহেতু 12 Ω রোধকের ক্ষেত্রে i1 ও i2 উভয়েরই প্রভাব আছে।



মেশ কারেন্ট এর দিক অনুযায়ী রোধকগুলোর দুই পাশে বিভব পার্থক্যের ধনাত্মক ও ঋণাত্মক চিহ্ন দেখানো হয়েছে যাতে করে কার্শহফ’স ভোল্টেজ নীতি প্রয়োগে সুবিধা হয়। প্রচলিত নিয়ম অনুযায়ী রোধকের যে প্রান্তে কারেন্ট প্রবেশ করে সেই প্রান্তকে ধনাত্মক চিহ্ন দ্বারা এবং অপর প্রান্তকে ঋণাত্মক চিহ্ন দ্বারা চিহ্নিত করা হয়। ভোল্টেজ সোর্স এর ক্ষেত্রে ঋণাত্মক থেকে ধনাত্মক পোলারিটির দিকে কারেন্ট প্রবাহিত হয়। এবার মেশ দুটিতে কার্শহফ’স ভোল্টেজ নীতি প্রয়োগ করা হলে নিচের সমীকরণ দুটি পাওয়া যাবে,

- 12 + 2i1 + 12(i1 – i2) + 4i1= 0 (মেশ-১ এর জন্য)

এবং

12(i2 – i1) + 9i2 + 8 + 3i2 = 0 (মেশ-২ এর জন্য)

উপরের সমীকরণ দুটি সমাধান করলে i1 ও i2 এর মান যথাক্রমে 1.5 A ও 0 A পাওয়া যাবে। মেশ কারেন্ট i1 ও i2 এর মান জানা মানে এই সার্কিটে যে কোন রোধকের মধ্য দিয়ে প্রবাহিত কারেন্ট এর মানও বের করা সম্ভব। যেমন 12 Ω রোধকের মধ্যে দিয়ে প্রবাহিত কারেন্ট হবে, i = i1 – i2 = 1.5 A.

এবার নিচের তিন মেশ বিশিষ্ট সার্কিট-টি বিবেচনা করা যাক। এই সার্কিটে দুটি কারেন্ট সোর্স আছে, কোন ভোল্টেজ সোর্স নেই। মেশ অ্যানালাইসিস এর ক্ষেত্রে কারেন্ট সোর্স যদি দুটি মেশ এর মাঝখানে না থেকে স্বতন্ত্রভাবে শুধু একটিমাত্র মেশ এর সাথে যুক্ত থাকে তাহলে সেই সোর্স কারেন্ট-ই হবে উক্ত মেশ এর কারেন্ট। ফলে ঐ মেশ এর জন্য কার্শহফ’স ভোল্টেজ নীতি প্রয়োগের দরকার নাই। যেমন এই সার্কিটের ক্ষেত্রে i1 = 1 A এবং i3 = 4 A (By inspection). তাহলে শুধুমাত্র মেশ-২ এর জন্য কার্শহফ’স ভোল্টেজ নীতি প্রয়োগ করতে হবে, যা এক্ষেত্রে,

2(i2 – i1) + 6i2 + 7(i2 – i3) = 0

i1 ও i3 এর মান যেহেতু ইতোমধ্যে জানা সেহেতু এই সমীকরণ থেকে সহজেই i2 এর মান 2 A বের করা যাবে। মেশ কারেন্ট i1, i2, ও i3 এর মান জেনে যাওয়ার পর ia (2 Ω রোধকের মধ্য দিয়ে প্রবাহিত কারেন্ট) ও ib (7 Ω রোধকের মধ্য দিয়ে প্রবাহিত কারেন্ট) এর মানও সহজেই বের করা যাবে: ia = i1 – i2 = 1 – 2 = – 1 A এবং ib = i2 – i3 = 2 – 4 = – 2 A. অনুরূপভাবে, 6 Ω রোধকের মধ্য দিয়ে প্রবাহিত কারেন্ট হবে i2 = 2 A.



নোট: দুটি এসেনশিয়াল মেশ এর মধ্যে কোন ব্র্যাঞ্চে যদি কারেন্ট সোর্স থাকে তাহলে সেই মেশ দুটিতে কার্শহফ’স ভোল্টেজ নীতি প্রয়োগ করা যাবে না, যেহেতু কারেন্ট সোর্স এর আড়াআড়ি ভোল্টেজ দেয়া থাকে না। ফলে এক্ষেত্রে সুপারমেশ (Supermesh) পদ্ধতি প্রয়োগ করতে হবে, অর্থাৎ মাঝের ব্র্যাঞ্চটিকে সরিয়ে দিয়ে দুটি মেশকে একটি মেশ হিসেবে বিবেচনা করতে হবে। তবে তার আগে সুপারমেশ শর্ত ছাড়াই কিছু সার্কিট সমাধান করে মেশ অ্যানালাইসিস সম্পর্কে ধারণা পরিষ্কার করতে হবে।



 সুপারপজিশন নীতি অনুযায়ী কোন লিনিয়ার সার্কিটে যদি একাধিক সোর্স থাকে তাহলে কোন একটি রোধকের আড়াআড়ি বিভব পার্থক্য হবে প্রত্যেক সোর্স দ্বারা স্বতন্ত্রভাবে উৎপন্ন বিভব পার্থক্যের বীজগণিতীয় যোগফলের সমান। কারেন্টের ক্ষেত্রেও একই নীতি প্রযোজ্য, তবে পাওয়ারের ক্ষেত্রে এই নীতি প্রয়োগ করা যাবে না। যে সকল সার্কিটে একাধিক সোর্স থাকে সেই সকল সার্কিটেই কেবল সুপারপজিশন নীতি প্রয়োগ করা হয়। সুপারপজিশন নীতি প্রয়োগের ক্ষেত্রে নিম্নের ধাপগুলো অনুসরণ করতে হবে:

ধাপ-১: একটি সোর্স ছাড়া বাকি সোর্সগুলোকে নিষ্ক্রিয় বা শূন্য করতে হবে। ভোল্টেজ সোর্সকে নিষ্ক্রিয় করতে হলে সোর্সটিকে সার্কিট থেকে খুলে ফেলতে হবে, যাকে বলে ওপেন সার্কিট। আর কারেন্ট সোর্সকে নিষ্ক্রিয় করতে হলে সোর্সটিকে সার্কিট থেকে খুলে ফেলে একটি তার দিয়ে টার্মিনাল দুটি যুক্ত করে দিতে হবে, যাকে শর্ট সার্কিট বলা হয়। উল্লেখ্য যে, ডিপেনডেন্ট সোর্সকে নিষ্ক্রিয় করা যাবে না।

ধাপ-২: যে সোর্সটি থেকে গেল তার জন্য কারেন্ট অথবা ভোল্টেজ বের করতে হবে।

ধাপ-৩: প্রত্যেক সোর্স এর জন্য আলাদাভাবে ধাপ ১ ও ২ পুনরাবৃত্তি করতে হবে।

ধাপ-৪: সবগুলো সোর্স এর জন্য কারেন্ট অথবা ভোল্টেজ এর বীজগণিতীয় যোগফল করে মোট কারেন্ট অথবা ভোল্টেজ পাওয়া যাবে।

সুপারপজিশন নীতি প্রয়োগের একটি উদাহরণ দেয়া যাক। নিচের সার্কিটে একটি কারেন্ট সোর্স, একটি ভোল্টেজ সোর্স, এবং তিনটি রোধক আছে। সুপারপজিশন নীতি প্রয়োগ করে 2 Ω রোধের আড়াআড়ি বিভব পার্থক্য তথা v0 এর মান বের করতে হবে। সার্কিটে যেহেতু দুটি সোর্স আছে সেহেতু শুধু ভোল্টেজ সোর্সের জন্য 2 Ω রোধের আড়াআড়ি বিভব পার্থক্য ধরা যাক v'0 এবং শুধু কারেন্ট সোর্সের জন্য 2 Ω রোধের আড়াআড়ি বিভব পার্থক্য v''0. তাহলে দুটি সোর্সের জন্য মোট বিভব পার্থক্য হবে, v0 = v'0 + v''0. এবার v'0 ও v''0 এর মান বের করতে হবে।



প্রথমে ভোল্টেজ সোর্সকে রেখে কারেন্ট সোর্সকে নিষ্ক্রিয় করলে নিচের এক লুপ বিশিষ্ট সরল সার্কিট পাওয়া যাবে। এই সার্কিটের ক্ষেত্রে v'0 এর মান হবে 4 V.



এবার কারেন্ট সোর্সকে বিবেচনায় নিয়ে ভোল্টেজ সোর্সকে নিষ্ক্রিয় করলে নিচের সার্কিট পাওয়া যাবে। যে কোন পদ্ধতি (যেমন কারেন্ট ডিভাইডার রুল) প্রয়োগ করে v''0 এর মান পাওয়া যাবে 8 V.



দুটি সোর্সের জন্য মোট বিভব পার্থক্য হবে, v0 = v'0 + v''0 = 4 + 8 = 12 V. একইভাবে তিন বা ততোধিক সোর্সের ক্ষেত্রে সুপারপজিশন নীতি প্রয়োগ করা যায়। সোর্স এর সংখ্যা বেড়ে গেলে সময় একটু বেশী লাগতে পারে, তবে প্রতিবার একটি করে সোর্স বিবেচনা করা হয় বিধায় এই পদ্ধতি খুব সহজ-সরল এবং ভুল হওয়ার সম্ভাবনাও কম থাকে।



আজকের পর্বে থেভেনিন’স ও নর্টন’স থিয়রেম এবং তাদের প্রয়োগ নিয়ে আলোচনা করা হবে। ইলেকট্রিক সার্কিট বিশ্লেষণের জন্য থেভেনিন’স থিয়রেম একটি খুবই গুরুত্বপূর্ণ ও প্রয়োজনীয় থিয়রেম। পাওয়ার সিস্টেমের ক্ষেত্রে এই থিয়রেম বিশেষ ভাবে ব্যবহার করা হয়। থেভেনিন’স থিয়রেম অনুযায়ী একাধিক সোর্স ও রোধকের সমন্বয়ে গঠিত যে কোন দুই-টার্মিনাল বিশিষ্ট লিনিয়ার সার্কিটকে একটি ভোল্টেজ সোর্স ও একটি সিরিজ রোধক দ্বারা প্রতিস্থাপন করা যায়। নিচের ডায়াগ্রামটি লক্ষণীয় যেখানে বাম পাশের ব্ল্যাক বক্সের মধ্যে একাধিক ভোল্টেজ সোর্স, একাধিক কারেন্ট সোর্স, ও একাধিক রোধক আছে। ব্ল্যাক বক্সের মধ্যে জটিল সার্কিটকে একটি ভোল্টেজ সোর্স ও একটি সিরিজ রোধক দ্বারা প্রতিস্থাপন করা হয়েছে, ডান পাশের সার্কিট লক্ষণীয়। ডান পাশের সরল সার্কিটকে মূল সার্কিটের থেভেনিন-সমতুল্য সার্কিটও বলা হয়। 



দুই-টার্মিনাল বিশিষ্ট যে কোন জটিল সার্কিটের থেভেনিন-সমতুল্য সার্কিট (Rth ও Vth) পেতে হলে নিম্নের ধাপগুলো অনুসরণ করতে হবে:

ধাপ-১: সবগুলো ভোল্টেজ ও কারেন্ট সোর্সকে নিষ্ক্রিয় করে টার্মিনাল A ও B এর মধ্যে তুল্য রোধ বের করতে হবে। এই তুল্য রোধই হচ্ছে Rth. Rth কে থেভেনিন-সমতুল্য রোধও বলা হয়। এই পদ্ধতি শুধুমাত্র ইনডিপেনডেন্ট সোর্স এর ক্ষেত্রেই প্রযোজ্য।

ধাপ-২: মূল সার্কিটে টার্মিনাল A ও B এর মধ্যে কোন রোধক থাকলে সেটিকে খুলে ফেলে যে কোন পদ্ধতির সাহায্যে A ও B এর মধ্যে ভোল্টেজ নির্ণয় করতে হবে। A ও B এর মধ্যে ভোল্টেজই হবে Vth, যাকে ওপেন-সার্কিট ভোল্টেজও বলা হয়।

ধাপ-৩: Rth ও Vth এর মান পাওয়ার পর থেভেনিন-সমতুল্য সার্কিট আঁকতে হবে। উপরের ডায়াগ্রামে ডান পাশের সার্কিট দ্রষ্টব্য।

উল্লেখ্য যে, ধাপ ১ ও ২ একে-অপর থেকে স্বতন্ত্র। ফলে যে কোনটি আগে সম্পন্ন করা যায়। এবার একটি উদাহরণ দেয়া যাক। নিচের সার্কিটে একটি ভোল্টেজ সোর্স ও চারটি রোধক আছে। টার্মিনাল A ও B এর মধ্যে থেভেনিন-সমতুল্য সার্কিট বের করতে হবে।



ধাপ-১ অনুযায়ী ভোল্টেজ সোর্সকে নিষ্ক্রিয় করলে নিচের সার্কিট পাওয়া যাবে। এই সার্কিটে টার্মিনাল A ও B এর মধ্যে তুল্য রোধের মান হবে, RAB = Rth = R1 + [(R2 + R3)||R4] = 1 + [(1 + 1)||2] = 2 kΩ.



ধাপ-২ অনুযায়ী মূল সার্কিটে টার্মিনাল A ও B এর মধ্যে ভোল্টেজ হবে, VAB = Vth = V1 (R2 + R3)/(R2 + R3 + R4) = 15 (1 + 1)/(1 + 1 + 2) = 7.5 V. উল্লেখ্য যে, টার্মিনাল A ও B যেহেতু ওপেন সেহেতু রোধক R1 এর মধ্যে দিয়ে প্রবাহিত কারেন্ট হবে শূন্য; ফলে R1 এর আড়াআড়ি বিভব পার্থক্যও শূন্য হবে।



Rth ও Vth এর মান পাওয়ার পর নিচের মতো করে থেভেনিন-সমতুল্য সার্কিট আঁকতে হবে। মূল সার্কিটে টার্মিনাল A ও B এর মধ্যে কোন রোধক খুলে থাকলে সেটিকে এখানে পুনরায় যুক্ত করতে হবে।



নর্টন’স থিয়রেম: নর্টন’স থিয়রেম অনুযায়ী একাধিক সোর্স ও রোধকের সমন্বয়ে গঠিত যে কোন দুই-টার্মিনাল বিশিষ্ট লিনিয়ার সার্কিটকে একটি কারেন্ট সোর্স ও একটি সমান্তরাল রোধক দ্বারা প্রতিস্থাপন করা যায়। নিচের ডায়াগ্রামে বাম পাশের ব্ল্যাক বক্সের মধ্যে একটি জটিল সার্কিট ও ডান পাশে সেটির নর্টন-সমতুল্য সার্কিট দেখানো হয়েছে।



এখানে RNo হচ্ছে নর্টন-সমতুল্য রোধ এবং INo হচ্ছে নর্টন-সমতুল্য কারেন্ট। নর্টন-সমতুল্য সার্কিট দু-ভাবে পাওয়া যেতে পারে। ইতোমধ্যে যদি থেভেনিন-সমতুল্য সার্কিট জানা থাকে তাহলে খুব সহজেই সোর্স রূপান্তরের সাহায্যে নর্টন-সমতুল্য সার্কিট পাওয়া যায়, এবং বিপরীতটাও সত্য। এজন্য থেভেনিন-সমতুল্য সার্কিট ও নর্টন-সমতুল্য সার্কিটকে একে-অপরের সমতুল্য বলা হয়। সম্পর্কগুলো নিম্নরূপ,

Rth = RNo 

INo = Vth/Rth 

Vth = INo RNo



উপরে বাম পাশের সার্কিটকে নর্টন-সমতুল্য সার্কিট এবং ডান পাশেরটিকে থেভেনিন-সমতুল্য সার্কিট বলা হয়। স্বতন্ত্র পদ্ধতিতেও নর্টন-সমতুল্য সার্কিট পাওয়া যায়। যেমন Rth ও RNo বের করার পদ্ধতি একই এবং প্রকৃতপক্ষে Rth = RNo. অন্যদিকে নর্টন-সমতুল্য কারেন্ট INo পেতে হলে টার্মিনাল A ও B কে শর্ট সার্কিট করে যে কোন পদ্ধতির সাহায্যে A ও B এর মধ্যে কারেন্ট বের করতে হবে। এই কারেন্টই হবে INo, যাকে শর্ট-সার্কিট কারেন্টও বলা হয়। RNo ও INo এর মান পাওয়ার পর উপরে বাম পাশের সার্কিটের মতো করে নর্টন-সমতুল্য সার্কিট আঁকতে হবে।

কোন মন্তব্য নেই:

একটি মন্তব্য পোস্ট করুন

পৃষ্ঠাসমূহ